Novel Pathological Role of hnRNPA1 (Heterogeneous Nuclear Ribonucleoprotein A1) in Vascular Smooth Muscle Cell Function and Neointima Hyperplasia

نویسندگان

  • Li Zhang
  • Qishan Chen
  • Weiwei An
  • Feng Yang
  • Eithne Margaret Maguire
  • Dan Chen
  • Cheng Zhang
  • Guanmei Wen
  • Mei Yang
  • Bin Dai
  • Le Anh Luong
  • Jianhua Zhu
  • Qingbo Xu
  • Qingzhong Xiao
چکیده

OBJECTIVE hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1) plays a variety of roles in gene expression. However, little is known about the functional involvement of hnRNPA1 in vascular smooth muscle cell (VSMC) function and neointima hyperplasia. In this study, we have attempted to investigate the functional roles of hnRNPA1 in the contexts of VSMC function, injury-induced vessel remodeling, and human atherosclerotic lesions, as well as discern the molecular mechanisms involved. APPROACH AND RESULTS: hnRNPA1 expression levels were consistently modulated during VSMC phenotype switching and neointimal lesion formation induced by wire injury. Functional studies showed that VSMC-specific gene expression, proliferation, and migration were regulated by hnRNPA1. Our data show that hnRNPA1 exerts its effects on VSMC functions through modulation of IQGAP1 (IQ motif containing GTPase activating protein 1). Mechanistically, hnRNPA1 regulates IQGAP1 mRNA degradation through 2 mechanisms: upregulating microRNA-124 (miR-124) and binding to AU-rich element of IQGAP1 gene. Further evidence suggests that hnRNPA1 upregulates miR-124 by modulating miR-124 biogenesis and that IQGAP1 is the authentic target gene of miR-124. Importantly, ectopic overexpression of hnRNPA1 greatly reduced VSMC proliferation and inhibited neointima formation in wire-injured carotid arteries. Finally, lower expression levels of hnRNPA1 and miR-124, while higher expression levels of IQGAP1, were observed in human atherosclerotic lesions. CONCLUSIONS Our data show that hnRNPA1 is a critical regulator of VSMC function and behavior in the context of neointima hyperplasia, and the hnRNPA1/miR-124/IQGAP1 regulatory axis represents a novel therapeutic target for the prevention of cardiovascular diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen-rich saline attenuates vascular smooth muscle cell proliferation and neointimal hyperplasia by inhibiting reactive oxygen species production and inactivating

Hydrogen-rich saline has been reported to prevent neointimal hyperplasia induced by carotid balloon injury. The purpose of the present study was to further investigate the molecular mechanisms underlying this phenomenon. Daily injection of a hydrogen-rich saline solution (HRSS) in rats was employed to study the effect of hydrogen on balloon injury-induced neointimal hyperplasia and the neointim...

متن کامل

High expression of hnRNPA1 promotes cell invasion by inducing EMT in gastric cancer

Advanced gastric cancer (GC) has a poor prognosis and its treatment strategies are not very efficient. Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) has emerged as a plausible GC marker, however the role and molecular mechanism of hnRNPA1 in cell invasion and migration remains unknown. In the present study, the gene expression across normal and tumor tissue (GENT) database was used to ev...

متن کامل

A disintegrin and metalloprotease 17 mediates neointimal hyperplasia in vasculature.

The requirement of a metalloprotease, a disintegrin and metalloprotease 17 (ADAM17) for the growth of cultured vascular smooth muscle cells has been demonstrated in vitro. However, whether this metalloprotease is responsible for vascular remodeling in vivo remains unanswered. Rat carotid arteries were analyzed 2 weeks after a balloon angioplasty. The neointimal cells were strongly positive for ...

متن کامل

Interferon Regulatory Factor 7 Protects Against Vascular Smooth Muscle Cell Proliferation and Neointima Formation

BACKGROUND Interferon regulatory factor 7 (IRF7), a member of the interferon regulatory factor family, plays important roles in innate immunity and immune cell differentiation. However, the role of IRF7 in neointima formation is currently unknown. METHODS AND RESULTS Significant decreases in IRF7 expression were observed in vascular smooth muscle cells (VSMCs) following carotid artery injury ...

متن کامل

Smooth Muscle Progenitor Cells: Friend or Foe in Vascular Disease?

The origin of vascular smooth muscle cells that accumulate in the neointima in vascular diseases such as transplant arteriosclerosis, atherosclerosis and restenosis remains subject to much debate. Smooth muscle cells are a highly heterogeneous cell population with different characteristics and markers, and distinct phenotypes in physiological and pathological conditions. Several studies have re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2017